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ABSTRACT: Patterns of correlations between the ocean and the atmosphere are examined using a high-resolution

(1/128 ocean and ice, 1/38 atmosphere) ensemble of data assimilative, coupled, global, ocean–atmosphere forecasts. This

provides a unique perspective into atmosphere–ocean interactions constrained by assimilated observations, allowing for the

contrast of patterns of coupled processes across regions and the examination of processes affected by ocean mesoscale

eddies. Correlations during the first 24 h of the coupled forecast between the ocean surface temperature and atmospheric

variables, and between the ocean mixed layer depth and surface winds are examined as a function of region and season.

Three distinct coupling regimes emerge: 1) regions characterized by strong sea surface temperature fronts, where uncer-

tainty in the oceanmesoscale influences ocean–atmosphere exchanges; 2) regions with intense atmospheric convection over

the tropical oceans, where uncertainty in the modeled atmospheric convection impacts the upper ocean; and 3) regions

where the depth of the seasonal mixed layer (MLD) determines the magnitude of the coupling, which is stronger when the

MLD is shallow and weaker when theMLD is deep. A comparison withmodels at lower horizontal (1/128 vs 18 and 1/48) and
vertical (1- vs 10-m depth of the first layer) ocean resolution reveals that coupling in the boundary currents, the tropical

Indian Ocean, and the warm pool regions requires high levels of horizontal and vertical resolution. Implications for coupled

data assimilation and short-term forecasting are discussed.
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1. Introduction

Previous studies posited that coupling of the atmosphere

with an eddy-resolving ocean model is essential for accurate

weather and climate forecasts (Kirtman et al. 2012; Small et al.

2008; Masumoto et al. 2004; Ma et al. 2016; Hewitt et al. 2016).

This imperative has spurred the development of operational

coupled forecast models (Komori et al. 2018; Laloyaux et al.

2015; Saha et al. 2010); however, often at low (0.58–18) ocean
resolution or with regional model configurations (Holt et al.

2011; Pullen et al. 2017). The application of coupled models to

forecasting raises new questions about the propagation of un-

certainty in the initial conditions across the ocean–atmosphere

(OA) interface and the impact of the initial uncertainty on the

fidelity of short-term forecasts (Pullen et al. 2017). Here, we

address some of these questions by examining patterns of en-

hanced OA interactions in an ensemble of an assimilative,

ocean-eddy-resolving, global coupled system—the Navy Earth

System Prediction Capability (Navy-ESPC). The Navy-ESPC

model (Barton et al. 2021) couples 1/128 ocean and ice models

with a 1/38 atmospheric model.

Previous studies of OA interactions used a combination of

observational datasets and free-running coupled models to

document the impact that midlatitude SST fronts can exert

on the atmospheric circulation, including the depth of the at-

mospheric boundary layer, surface wind speed and direction,

precipitation, clouds, and, potentially, the storm track. We

review this body of literature in section 2. Despite the depth

of the existing literature onOA interactions, the use of coupled

models for medium-range weather forecasting motivates a new

set of research questions:

1) What are the hot spot locations for OA coupling? Specifically,

where will a perturbation in one component readily trans-

late to uncertainty in the other component?

2) How does the uncertainty in initial conditions propagate

across the OA interface? What physical mechanisms deter-

mine the direction of uncertainty propagation in a cou-

pled model?

3) What guidance do patterns of the OA coupling provide to

the developers of data assimilation (DA) algorithms?

4) How does resolution affect the ability of a coupledmodel to

capture realistic patterns of OA correlations?

Examination of the forecast error covariances (computed

from an ensemble of coupled forecasts) provides an insight to

the questions above. Modern data assimilation methods pro-

vide an estimate of the initial uncertainty in the form of an

ensemble of (coupled) initial conditions. The coupled ensemble

forecast from these initial conditions can illuminate the degree
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to which the initial condition uncertainty is correlated across

the OA interface. High cross-fluid correlations correspond

to hot spots of local OA interactions. Examining different

pairs of the coupled correlations (e.g., between SST and heat

fluxes, precipitation, and clouds) together with the review of

prior process-based studies can shed light on the mechanisms

and the direction of the information flow across the OA in-

terface. Finally, sensitivity of the OA correlations to the model

configuration can shed light on the role that ocean resolution

plays in the realism of the OA correlations and, hence, impli-

cations for the development of coupled DA methods.

Many previous studies have examined patterns of ocean

and atmosphere correlations using monthly mean anomalies

from annual climatology of free-running coupled models and

observational data (Cayan 1992; Alexander et al. 2000; S. P.

Bishop et al. 2017; Feng et al. 2018; Small et al. 2019). In

contrast, here we compute OA correlations that emerge in the

first 24 h of the coupled ensemble forecasts. While correlations

of monthly anomalies provide information on perturbations to

the seasonal cycle, the assimilative ensemble perturbations

considered here represent the likely uncertainty in the analysis

system. This focus on short-term correlations is both relevant

for emerging applications of coupled DA and reflects recent

findings in the process-based literature that the monthly av-

erage OA interactions can be dominated by a series of short-

lived OA exchanges on the synoptic scale (Parfitt and Czaja

2016; O’Neill et al. 2017).

In this paper, we focus on examining two classes of OA

correlations. First, we examine correlations between the SST

and atmospheric variables, such as the 2-m temperature, pre-

cipitation, wind speed, cloud cover, and radiative and sensible

heat fluxes. These correlations are dominated by the balance of

heat exchange, radiation, and evaporation between the ocean

surface and the atmosphere. Second, we examine correlations

between the surface wind speed and the mixed layer depth,

which are dominated by the momentum transfer between

atmosphere and the ocean. We examine these correlations

in three sets of runs: coupled runs with the eddy-resolving

(1/128), eddy-allowing (1/48), and eddy-parameterized (18)
ocean models.

2. Background: Atmospheric response to ocean
mesoscale SST fronts

There is an extensive body of literature on ocean atmo-

sphere interactions and the response of the atmosphere to

ocean mesoscale SST fronts. We review these prior studies

here to motivate our inquiry and aid in interpretation of our

results.

Enhanced OA coupling was documented by Chelton et al.

(2001), who used newly available measurements from the

QuikSCAT surface wind remote sensing satellite to document

coupling between the low-level winds and the SST anomalies

associated with tropical instability waves in the tropical east

Pacific (TEPAC). Chelton et al. (2001) found that similar to

the original hypothesis of Wallace (Wallace et al. 1989; Hayes

et al. 1989) [and also summarized in Fig. 1], positive SST

anomalies destabilize the atmospheric boundary layer and, as a

result, enhance entrainment of momentum from the winds in

the free atmosphere. Following the same logic, negative SST

anomalies stabilize the atmospheric boundary layer and reduce

entrainment ofmomentum from the free atmosphere, resulting

in lower surface winds. This results in slower winds over the

cold-water anomalies of the equatorial cold upwelling tongue.

In the western boundary current regions, Chelton et al. (2004)

showed that (similar to the TEPAC) the ocean SST fronts

drive a significant portion of the variability in the local winds,

heat, and moisture fluxes. Indeed, the vertical moisture flux in

the Gulf Stream region can penetrate through the entire depth

of the troposphere (Minobe et al. 2008; Small et al. 2008) and,

once entrained in the storm track, can have significant impact

on the path of the Atlantic storm track and on European

precipitation (Kirtman et al. 2012; Vitart andBalmaseda 2018).

Similar relationships have been documented for the Antarctic

Circumpolar Current (ACC) (Byrne et al. 2016; Frenger et al.

2013). Chelton et al. (2004) also found that wind mixing is

FIG. 1. Influence of a positive SST anomaly on the atmospheric boundary layer in a case of

cross-gradient winds. Summary diagram and composition is influenced by the discussions

and graphics from Wallace et al. (1989), Frenger et al. (2013), and Kilpatrick et al. (2016)

among others.
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important in frontal regions and depends on the orientation of

the wind with respect to the front. For winds oriented along an

SST front, wind curl dominates as stronger winds are mixed

down to the surface on the warm side of the front resulting in

quasigeostrophic Ekman pumping.Winds perpendicular to the

front lead to divergence when the winds pass from the cold to

the warm sector as the surface wind speed is enhanced over the

warmer water, and likewise convergence occurs for wind di-

rected from the warm to the cold side of the front.

In contrast to the atmospheric response to SST perturba-

tions through (de)stabilization of the atmospheric boundary

layer, other studies highlighted the importance of the pres-

sure adjustment mechanism (e.g., Lindzen and Nigam 1987;

Putrasahan et al. 2013) and the orientation of the atmospheric

flow with respect to the SST gradient (Schneider and Qiu

2015; Kilpatrick et al. 2016). Lindzen and Nigam (1987) and

Putrasahan et al. (2013) showed that enhanced local winds can

result from a pressure gradient due to the density difference

between the warm and moist air on the warm side of the SST

front and the cold and dry air on the cold side of the SST front.

For the case of cross-front winds (Fig. 1), surface wind stress

divergence dominates and the vertical response exhibits

an inertia–gravity wave similar to the mountain wave effect

(Kilpatrick et al. 2016).

More recent studies (Small et al. 2019) showed that even in

the midlatitudes, where SST gradients are common, the OA

coupling behaves differently depending on the horizontal av-

eraging scale chosen for the surface fluxes. For scales smaller

than 500 km, the response of the atmosphere to SST gradients

dominates (see description above and Figs. 1 and 2). To cor-

rectly simulate the direction of the OA fluxes on these small

scales in midlatitudes requires coupled model forecasts with

an eddy-permitting (about 25 km resolution) or eddy-resolving

(less than 10 km resolution) oceanmodel. In contrast, for scales

greater than 500 km, the atmosphere drives the SST anomalies

via surface heat flux forcing and by influencing ocean mixing

(Small et al. 2019; S. P. Bishop et al. 2017; Xie 2004).

In addition to the coupling between the winds and the

SSTs, the warm ocean SST anomalies associated with meso-

scale eddies and fronts can result in enhanced precipitation

and cloud cover. The first instrumentally documented record of

these effects dates back to the first weather-radar-based ob-

servations of the Gulf Stream current (Hobbs 1987). More

recently these effects were documented using satellite obser-

vations in the Southern Ocean (Frenger et al. 2013). The local

increase in the cloud cover and precipitation can be attributed

to the response of the atmospheric boundary layer stability,

atmospheric convection, and changes in the surface moisture

supply to perturbations in the SST (Frenger et al. 2013;Minobe

et al. 2008). Finally, recent papers suggest that the time-average

OA interactions can be dominated by the intense but short-

lived OA interactions on the synoptic scales (Parfitt and Czaja

2016; O’Neill et al. 2017).

In this paper, we use daily averaged fields to examine

correlations on the short time scales. We contrast results in

boundary current regions with other regions. We focus on anal-

ysis of correlations that are directly relevant to coupled DA

and short-term forecasting. We seek to establish relationships

between the correlations calculated in our system with the

atmosphere–ocean interaction processes described in prior

literature and also suggest physical mechanisms that might

explain novel results.

3. Methods

a. Navy-ESPC model

1) COUPLED MODEL WITH EDDY-RESOLVING OCEAN

Navy-ESPC is the new coupled model developed by the

U.S. Naval Research Laboratory to provide subseasonal

forecasts of the coupled Earth system (Barton et al. 2021).

Navy-ESPC comprises the Navy Global Environmental Model

(NAVGEM) atmospheric model at 1/38 resolution (Hogan

et al. 2014) and the Global Ocean Forecasting System (GOFS)

at 1/128 resolution (Metzger et al. 2014). The GOFS system

combines the Hybrid Coordinate Ocean Model (HYCOM;

Bleck 2002), and the LosAlamos Sea IceModel (CICE version

4; Hunke and Lipscomb 2015). HYCOM has 42 hybrid vertical

levels with a top level of 1m. The land model is implemented

as a part of the atmospheric model (Hogan 2007). The coupled

model uses the Earth System Modeling Framework (ESMF;

(Hill et al. 2004; Theurich et al. 2016) to exchange fields within

the bulk formula parameterizations hourly, including 10-m

wind, 2-m temperature and humidity, downwelling shortwave

and longwave fluxes at the surface, and precipitation rates.

NAVGEM and HYCOM compute fluxes independently using

the COARE V3.0 algorithm (Fairall et al. 2003; Kara et al.

2005) based on a common set of exchanged fields. To improve

representation of the Madden–Julian oscillation, NAVGEM

uses a modified Kain–Fritsch convection scheme (Kain and

Fritsch 1990; Ridout et al. 2005) instead of the simplified

Arakawa–Shubert scheme used in the uncoupled version of

NAVGEM (Hogan et al. 2014).

Initial conditions for the 24-h forecast are estimated using a

weakly coupled DA approach. Following the convention of

Penny et al. (2017), in the weakly coupled system the coupled

model provides the first guess for DA but no error cross

correlations between components (e.g., between the atmo-

sphere and the ocean) are used in the generation of the initial

FIG. 2. Influence of a positive SST anomaly on the atmospheric

boundary layer (ABL) in a case of alongfront winds (U directed

into the page). Summary diagram and composition is influenced by

the discussions and graphics from Kilpatrick et al. (2016).
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conditions. We use the Hybrid-4DVAR system of Kuhl et al.

(2013) for atmospheric initial conditions and the 3DVAR-FGAT

system of Cummings and Smedstad (2014) for ocean and ice

initial conditions. Cummings and Smedstad (2014) and Frolov

et al. (2020) provide a comprehensive list of observations in-

cluded in the ocean and atmospheric data assimilation systems.

The ocean, ice, and atmospheric DA systems use assimilation

windows of different lengths. The atmospheric Hybrid-4DVAR

updates the atmospheric state every 6 h, with DA windows

centered on 0000, 0600, 1200, and 1800 UTC. Ice and ocean

DA update initial conditions daily during a 24-h DA window

centered at 1200 UTC. In other words, for each ocean and ice

update, there are four atmospheric updates. A 3-h-long in-

cremental analysis update is used to minimize the initialization

shocks and to synchronize the components of the systembefore

the next data assimilation window starts.

2) ENSEMBLE FORECAST SYSTEM

The Navy-ESPC system employs the ensemble of data as-

similations (EDA) approach (Houtekamer et al. 1996; Isaksen

et al. 2010) to generate an ensemble of initial conditions for the

forward model. Our EDA system uses 16 ensemble members.

Member 1 is the traditional deterministic data assimilation and

forecast system. Members 2–16 are replicates of member 1 but

with observational data perturbed with random noise consis-

tent with the observation error covariances assumed by the

DA systems. Observations are perturbed for all components

of the system: atmosphere, ocean, and ice. The resulting system

is known to exhibit deficient ensemble spread as compared

to observed forecast errors (Bowler et al. 2017; Barton et al.

2021). We plan to address this deficiency in later versions of

the system.

Our EDA system was cycled from 15 December 2016 to

1 February 2018 (see Barton et al. (2021) for the description of

the cycling system). Once a week (starting from 1 February

2017), a 60-day forecast was issued at 1200UTC after the initial

3-h IAU period was applied. All of the work presented in this

paper analyzes the first 24 h of the weekly 60-day forecasts.

3) MIXED LAYER DEPTH COMPUTATION

Mixed layer depth (MLD) used in this paper is the diagnostic

output of the HYCOM model that is computed on the native

tripolar horizontal grid and the hybrid vertical coordinates

using the native density variable of HYCOM. The density

criteria used to establish theMLD is equivalent to a 0.3K jump

across the MLD interface. The MLD is computed for each

ensemble member. The ensemble mean MLD is obtained by

averaging MLD for individual members and not by calculating

the MLD for ensemble averaged salinity and temperature to

avoid using the smoothed vertical gradients in the 3D salinity

and temperature fields of the ensemble mean forecast.

b. Low-resolution version of the NAVY-ESPC model

To examine the impact of ocean resolution on the OA cor-

relation patterns, we reran the ensemble forecasts described in

section 3.1.2 in the ocean-eddy-allowing configuration (1/38 at-
mosphere, 1/48 ocean, and 1/48 ice). We retained the same

vertical resolution in both the ocean and the atmosphere. The

initial conditions for this reforecast dataset were generated

from the eddy-resolving initial conditions generated by the

cycling EDA system from section 3.1.2 that used 1/128 reso-
lution for the ocean component of the coupled model, by

smoothing and interpolating them to the coarser grid.

c. CERA-20C dataset

To examine correlation relationships in the coupled ensem-

ble with parameterized ocean eddies, we used the CERA-20C

dataset fromECMWF (Laloyaux et al. 2015). CERA-20C used

18 horizontal resolution for all components of the Earth model

and 10-m vertical resolution for the first layer of the ocean

model. The daily ensembles of forecasts were downloaded

from the ECMWF MARS archive for every other month of

2007 (starting from February 2007). The daily averages were

computed by averaging 0600 and 1800 UTC publicly available

forecasts. We downloaded data for 2007 because CERA data

were not available for 2017, when the Navy-ESPC archive was

produced. Because of these multiple differences in the sam-

pling between the Navy-ESPC and CERA, we will confine our

discussion to qualitative comparisons of patterns and we will

not assign any statistical significance to these differences.

d. Index of SST–wind speed correlation

To quantify the propensity of each grid cell (indexed by the

counter i) to have positive or negative correlations over the

year, we used the following index:

F(i)5
N

corr(i).thr
2N

corr(i)#2thr

N
corr(i).thr

1N
corr(i)#2thr

, (1)

where N is the number of times when the correlation with a

quantity of interest was either greater (Ncorr(i).thr) or smaller

(Ncorr(i),thr) than a given threshold. We used the threshold of

0.1 to omit cases when the magnitude of the correlation was

too small to be meaningfully1 considered positive or negative.

To reduce noise in correlations due to the small ensemble size,

we spatially average the correlations in Eq. (A3). The spatial

averages were computed using a centered 58 3 58 box-car filter.
Values F(i) are bound between [21, 1]. Positive values of

F(i) indicate that positive correlations are more common than

negative correlations over the 12-month record, and vice versa.

4. Results

a. Correlations between SST and atmosphere

Over the annual cycle, the global ocean can be divided into

three categories based on the prevalent sign of the SST–wind

speed correlations [index F(i) in Eq. (1)]: 1) regions dominated

by positive SST–wind speed correlations (red shading), 2) re-

gions dominated by negative SST–wind speed correlations

1Using 16 ensemblemembers, averaging over a 53 5 box of grid

points, and ignoring reduction in the degrees of freedom due to

autocorrelation, correlation coefficients greater than 0.08 are

statically significant at p 5 0.1.
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(blue shading), and 3) regions where neither negative nor

positive correlations dominate (white shading) as shown in

Fig. 3a. We chose the correlations between the SST and

the wind speed as the basis for our classification because

positive correlations typically indicate SST perturbations

driving the atmospheric response and negative correlations

indicate that the ocean is responding to atmospheric per-

turbations (Saravanan and Chang 2019).

Areas where correlations are predominantly positive through

the year (red shading within a black contour line) overlap with

regions of strong SST gradients (Fig. 4a) and large SST ensemble

variance (Fig. 4b). This finding is in accord with the extensive

literature on the response of the atmosphere to SST fronts re-

viewed in section 2 and is described further in section 4a(1). In

section 4a(1), we also examine the annual cycle of three regions

with positive correlations: the Gulf Stream (region 1), the

Falklands Current (region 2), and the tropical east Pacific

(region 3) outlined with red lines in Fig. 3a.

Review of the areas with predominantly negative correla-

tions through the year (blue shading within a black contour

line) indicate that these areas overlap with areas of enhanced

atmospheric convection (as indicated by persistent cloud cover

and large precipitation amounts in Figs. 4c and 4d) and areas

with very shallow oceanic mixed layers (Figs. 4e and 4f). Most

of these areas are contained within the warm pool (region 4)

and the tropical Indian Ocean (region 5). The Pacific sub-

tropical convergence zones exhibit slightly more negative

correlation values (region 6). We examine the annual cycle of

these three regions with negative correlation and diagnose the

direction of the fluxes in section 4a(2).

Regions that do not demonstrate annual-averaged prefer-

ence for either negative or positive SST–wind speed correla-

tions (white shading in Fig. 3a) can be further subdivided into

regions with an annual cycle with marked positive and negative

correlations that cancel in the annual average and regions

where correlations are very small through most of the year. To

separate between these two cases, Fig. 3b shows the frequency

with which correlations exceeded our target criteria of 0.1.

Regions in deep blue (outlined with the 30% isoline) do not

show strong correlations between wind speed and SST through

most of the year (at least 70%) and will not be examined further.

However, many of the regions do have correlations exceeding

the threshold through most of the year. We will examine one

such region (southern Pacific) in more detail in section 4a(3).

To summarize, our analysis suggests that the global pattern

of the OA correlations can be roughly segmented into three

regions:

1) Regions dominated by strong SST fronts, where ocean

perturbations drive the atmospheric response;

2) Tropical ocean, where perturbations in atmospheric con-

vection drive the ocean response; and

3) Regions where the seasonal changes, including the depth

of the ocean mixed layer, determine the sign of the OA

correlations.

We note that the proposed categorization is far from exhaus-

tive and further distinctions between regions might be relevant

for specific applications.

1) REGIONS DRIVEN BY THE MESOSCALE VARIABILITY

OF SST GRADIENTS

Ocean regions with strong SST gradients include western

boundary currents (such as Gulf Stream, the Kuroshio, and the

Somali Currents), elements of the Antarctic Circumpolar

Current (such as Agulhas and Falklands retroflection regions),

the eastern boundary currents (such as Humboldt, Benguela,

and California Currents), currents associated with equatorial

upwelling in the tropical east Pacific (TEPAC), and equatorial

counter currents (e.g., the Southern Indian Counter Current).

The locations of such areas can be seen in Figs. 4a and 4b that

show magnitudes of SST gradients and the standard deviation

of the SST ensemble. In fact, there is a strong correspon-

dence between the strength of the SST gradients in the control

member of the ensemble (Fig. 4a) and the standard deviation

of the ensemble SST (Fig. 4b). We attribute this correspon-

dence to the fact that in the eddy-resolving ensemble most of

the SST ensemble spread is due to the uncertainty in the lo-

cation of ocean features with strong SST gradients (such as

FIG. 3. (a) Prevalence of positive (red colors) or negative (blue

colors) direction of SST–wind speed correlations in the annual

cycle, computed using F(i) from Eq. (3). Black contour indicates

20.5 and 0.5 isolines. Study regions are outlined with red boxes and

include 1)Gulf Stream, 2) Falklands, 3) tropical east Pacific, 4) warm

pool, 5) tropical Indian Ocean, 6) North Pacific subtropical con-

vergence zone, 7) South Pacific midlatitudes. (b) Frequency of the

absolute value of the SST–wind speed correlations exceeding the

threshold of 0.1. Black isoline drawn for frequency of 30%.
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western boundary currents). To facilitate visual comparisons

between multiple maps in the paper, we will use the contour

line of SST STD equal to 0.2 K as a common reference in

Figs. 5 and 11. This contour line is only used as a visual guide

and we do not assign any specific dynamical interpretation to

this value.

Figure 5 shows that regions of strong SST gradients [above

1.5K (100 km)21 or SST STD of 0.6 K] exhibit positive corre-

lations of SST2 perturbations with air temperature (Fig. 5a),

total precipitation (Fig. 5b), wind speed (Fig. 5c), total cloud

cover (Fig. 5d), and sensible and latent heat fluxes (Figs. 5e and

5f). The same regions show slightly negative correlation with

net radiative fluxes (Figs. 5g,h). These correlation patterns are

consistent with prior observational findings (Small et al. 2008;

Chelton et al. 2001; Chelton and Xie 2010; Deser et al. 1993;

Frenger et al. 2013; Hobbs 1987; Wu and Kirtman 2007) that

are characteristic of regions where the ocean drives the vari-

ability in the atmosphere (Saravanan and Chang 2019). A

summary of these prior findings is described schematically in

Figs. 1 and 2. In the presence of a strong SST gradient, a change

in SST is often associated with ocean mesoscale activity

that introduces SST perturbation in the form of an SST front

associated with tropical instability waves, Gulf Stream mean-

ders, or ‘‘squirts and jets’’ of the upwelling currents. A positive

perturbation in the SST leads to an increase in surface winds

(positive correlations in Fig. 5c) and enhanced turbulent heat

fluxes (positive correlations in Figs. 5e and 5f), which is consis-

tent with prior findings (Minobe et al. 2008; Small et al. 2008).

The same increase in SST leads to an increase in the overlaying

atmospheric temperatures (supported by positive correlations

FIG. 4. Annual averages of (a) SST gradient, isoline is drawn for std(SST) 5 0.2 K. (b) Ensemble standard

deviation for SST, isoline is drawn for std(SST) 5 0.2K. (c) Model precipitation climatology. (d) Model cloud

fraction climatology. (e) Mean mixed layer depth (MLD). (f) Frequency of MLD shallower than 20m; the isolines

indicate frequency of 80% (black) and 20% (gray).

2 Note that over the ice-covered areas, the SST switches to the ice

surface temperature. For that reason, we ignore analysis of corre-

lations in this paper in the high-latitude regions with seasonal

ice cover.
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in Fig. 5a) and enhanced turbulence in the atmospheric boundary

layer, which is consistent with prior findings (Chelton et al. 2001;

Frenger et al. 2013). Enhanced latent heat flux (Fig. 5f) and

elevated mixing in the boundary layer lead to increased

cloudiness (Fig. 5d) (Deser et al. 1993) and precipitation

(Fig. 5b) (Hobbs 1987). In turn, the increased cloud cover

(Deser et al. 1993), reduces the incoming solar radiation (neg-

ative correlation in Fig. 5g).

The magnitude of the SST correlation with total precipita-

tion and the wind speed is highest for the western boundary

currents in the local hemisphere winter months when the gra-

dient between the warm waters of the ocean and the cold

FIG. 5. Annual average of correlations between SST and (a) air temperature at 2m, (b) total precipitation,

(c) wind speed, (d) total cloud cover, (e) sensible heat flux, (f) latent heat flux, (g) shortwave heat flux, and

(h) longwave heat flux in the Navy-ESPC ensemble. For radiative fluxes in (g) and (h), the positive direction is

downward (positive correlation indicates warmer ocean temperatures correlate with increased radiative forcing of

the ocean) and for turbulent fluxes in (e) and (f) the positive direction is upward (positive correlation indicates that

warmer SST correlates with increased flux into the atmosphere). Contour lines indicated average STDof the SST of

0.2K (gray). Note that different panels use different color scales.
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outflow from the continents is the highest (see the annual time

series of the correlations in Figs. 6b–d). In summer, the sign of

the correlation for SST–wind speed and SST–heat flux can

reverse (e.g., in the month of August in the Gulf Stream region

Fig. 6c), indicating the reversal of the influence in local sum-

mer, when the atmosphere starts to influence the surface ocean

variability. As discussed in further detail in section 4a(3) be-

low, we attribute this to the shallowing of the seasonal mixed

layer to about 20m (Fig. 7).

2) OA INTERACTIONS IN THE AREAS DOMINATED BY

ATMOSPHERIC CONVECTION

In the regions of strong atmospheric convection, the sign of

the correlation is often the opposite of regions dominated by

strong SST gradients. We examine three of these regions in

detail: tropical warm pool (region 4 in Fig. 3a), tropical Indian

Ocean (region 5), and the subtropical North Pacific (region 6).

The tropical warm pool and the tropical Indian Ocean are of-

ten characterized by SSTs in excess of 288C that promote and

sustain strong atmospheric convection with associated rainfall

(Figs. 4c,d). The subtropical regions are characterized by a

period of convection associated with the monsoon. Following

Meehl (1987), we use a broad definition of the monsoon as a

seasonal shift in precipitation and wind patterns in the

tropics and subtropics due to differential heating of the

continents and ocean and seasonal shifts in the intertropical

convergence zones.

On subseasonal time scales, atmospheric convection is

modulated by the active and inactive phases of the Madden–

Julian oscillation (MJO)—a large-scale wave pattern of en-

hanced convection that circles the globe in 30–60 days—as well

as by convectively coupled equatorial waves. However, in the

context of this paper, we are interested in how the coupled

system responds over a 24-h forecast to perturbations of the

convective strength in the ensemble members (relative to the

mean analysis of the convective state). For example, during

an active MJO or monsoon phase all ensemble members might

be experiencing active convection. However, the daily averaged

intensity of this convection can be different between the en-

semblemembers, which can affect the state of the ocean surface.

Themechanics of theOA interaction in the convectively active

areas are summarized in Fig. 8. The cases of reduced convec-

tion are characterized by fewer clouds (Fig. 5d), less precipi-

tation (Fig. 5b), and lighter winds (Fig. 5c). This meteorological

FIG. 6. Annual cycle of regionally averaged correlation between SST and total precipitation (blue), total flux

(red), and wind speed (yellow). Spatial averages are computed over (a) South Pacific Ocean, (b) Gulf Stream,

(c) Brazil–Falkland confluence region, (d) tropical east Pacific, (e) warm pool, (f) tropical IndianOcean, and (g) the

subtropical North Pacific. Locations of the averaging regions are shown in Fig. 3. Note that regional averages were

computed for number of points between 300 (Gulf Stream) and 2600 (South Pacific). For such large number of grid

points, the average correlation coefficient is significant at very low magnitudes ;0.01.
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pattern leads to an increase in shortwave radiation (Fig. 5g)

that warms the SST, which increases surface ocean stratifica-

tion and suppresses vertical mixing. This suppression can be

further amplified in the presence of diurnal warm layers

(Matthews et al. 2014). Combined with lighter winds, this in-

creased stratification leads to a shallower oceanic mixed layer.

These correlation patterns are indicative of the atmosphere

driving the ocean.

Seasonally, the OA correlations are enhanced during the

periods with lighter winds and, hence, with a shallower MLD.

For example, in the case of the tropical Indian Ocean and the

warm pool, the wind are lightest (below 5m s21) and the MLD

is shallowest (shallower than 20m) during spring and fall sea-

sons (Figs. 7e,f). During this period, the correlations are also

stronger (Figs. 6e,f). We attribute the enhanced MLD and OA

correlation strength to the fact that an atmospheric perturba-

tion of equal magnitude will have a larger impact on the surface

ocean if the MLD is shallower. The pattern of shallower MLD

in Fig. 7 is consistent with the annual cycle of the monsoon

described in Meehl (1987).

3) OA INTERACTIONS MODULATED BYOCEANICMIXED

LAYER DEPTH

Feng et al. (2018) and Laloyaux et al. (2018) documented

that in the CERA system, OA correlations in the midlatitudes

follow the seasonal cycle of the MLD. During local summer,

when MLD is shallow, the correlations between SST and 2-m

temperature are enhanced; and during the local winter they are

close to zero. We observe similar behavior of OA correlations

FIG. 7. Annual cycle of regionally averaged MLD (blue) and wind speed (red) in the Navy-ESPC ensemble.

Spatial averages are computed over (a) South Pacific Ocean, (b) Gulf Stream, (c) Brazil–Falkland confluence

region, (d) tropical east Pacific, (e) warm pool, (f) tropical Indian Ocean, and (g) the subtropical North Pacific.

Locations of the averaging regions are shown in Fig. 3.

FIG. 8. Response of the tropical ocean to perturbations in the

atmospheric convection.

MAY 2021 FROLOV ET AL . 1201

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 06/30/21 03:37 PM UTC



in the midlatitudes for correlations between SST and 2-m

temperature (e.g., Fig. S1a in the online supplemental material

for the South Pacific). We find that the magnitude of correla-

tion is enhanced during the local summer when the average

wind speed drops from a wintertime average of 9m s21 to

about 7m s21, which leads to a shallowing of the MLD from a

wintertime maximum of 90m to a summertime minimum of

20m (Fig. 7a). Similar patterns were observed for the North

Pacific (not shown).

However, unlike the previous studies in the CERA system

(Feng et al. 2018; Laloyaux et al. 2018), we also find that MLD

modulates the strength of the OA correlations in the tropical

and subtropical regions [see section 4a(2)], where the strength

of the winds and consequently the depth of the mixed layer are

modulated by the seasonal monsoon. For example, in the Indian

Ocean the winds are stronger during the summer monsoon

season leading to a deeper oceanic mixed layer (Fig. 7f).

Also, in addition to the previous findings of Feng et al.

(2018), we find that the sign of the wind speed–SST correlations

in the midlatitudes can reverse from negative in local summer

to positive in local winter (e.g., Figure 6a for the South Pacific).

The OA interactions in the local summer (and in the presence

of a shallow MLD) are consistent with the traditional view of

the atmosphere driving the ocean (Xie 2004; Small et al. 2008).

During the shallow MLD periods, positive SST perturbations

are negatively correlated with the wind speed, which indicates

that increased wind speed cools a shallow mixed layer through

enhanced vertical mixing and enhanced upward turbulent

fluxes. During the local winter in the midlatitudes (and in the

presence of a deeper mixed layer) the correlation between SST

and wind speed reverses sign (Fig. 6a for the South Pacific).

The sign of the correlations (positive for precipitation andwind

speed) are indicative of the ocean driving the atmosphere.

Note that in the presence of strong boundary currents (Falklands

and the Gulf Stream regions in Figs. 6b,c) the OA exchanges

are dominated by strong SST gradients and are instead atten-

uated rather than reversed between the summer and winter.

This reversal of the OA correlations in presence of the deep

MLD has not been documented in the literature to our knowl-

edge and is further discussed in the conclusions section.

b. Correlations between MLD and wind stress

Our analysis shows that perturbations in the daily wind

speed affect MLD more strongly when the ambient MLD is

already shallow. For example, Fig. 9 shows that for the annual

average, areas with strong MLD–wind stress correlations

overlap with regions were the MLD is shallower than 20m

(highlighted with a red contour line). Such dependence on

MLD reflects the fact that it takes more work to mix a deep-

water column than a shallow one. Hence, the same magnitude

of the wind perturbation will affect regions of shallower MLD

withmore ease. This is consistent with the finding of Alexander

and Penland (1996) that wind work dominates ocean mixing in

summer months and deep convection dominates ocean mixing

in winter (see Fig. S2 for the annual cycle of correlations).

Additionally, the strength of the coupling between wind stress

and the MLD is stronger in the west Pacific and the Indian

Oceans (where the mixed layer is often separated from the

FIG. 9. Annual average correlations between wind stress magnitude and mixed layer depth in the Navy-ESPC

ensemble: (a) correlation, (b)mean wind stress magnitude, and (c) meanMLD.Red contour delineates the average

MLD of 20m.
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thermocline) than in the east Pacific (where the mixed layer

and the thermocline variability is often consistent and strongly

influenced by nonlocal ocean dynamics).

The relationship between the ambient MLD and the strength

of the wind stress–MLD correlation is also apparent in the

maps of the seasonally averaged correlations (Fig. S2). In

Fig. S2, strong correlations in the midlatitudes correspond to

seasonal shallowing of the MLD. Further investigation of the

relationship between MLD and wind stress shows that this

relationship holds even for episodic events. Figure S3 shows

three consecutive weeks of the correlations, with stronger cor-

relations corresponding to periods of weak winds and associated

shallowMLD. This is especially prominent in the tropics, where

high solar radiation reestablishes a shallowMLD in the presence

of weak winds. In this case, periods of high correlations are

greatly diminished by episodes of stronger winds that deepen

the mixed layer beyond 20m. A summary of this mechanism is

presented in Fig. 10.

5. Impact of resolution on the correlations

Section 4 documents patterns of OA correlations in a cou-

pled model with an eddy-resolving ocean component: hori-

zontal resolution of 1/128 and 1m thickness for the top layer of

the ocean model. Do these correlation patterns hold in models

with coarser ocean resolution? As a point of comparison, we

will use the Navy-ESPC forecasts with reduced horizontal

ocean resolution (1/48) and the ECMWF’s CERA ensemble

system (18 horizontal resolution in the atmosphere and ocean,

and 10m top vertical resolution in the ocean). CERA uses a

similar design for generation of the ensemble perturbation

based on the ensemble of data assimilation methodology.

However, CERA uses a different coupled model and data as-

similation than the Navy-ESPC system, and the time period

considered is different as CERA was not available for 2017.

Figure 11 shows maps of the annual-average correlations

between the SST and the atmospheric fields in the eddy-

resolving ensemble (left column), eddy-permitting ensemble

(middle column) and eddy-parameterized ensemble (right

column). Overall, the reduction in the ocean resolution

reduces the impact of the ocean on the atmosphere, which is

evident through:

1) An increase of negative correlation magnitudes between

SST and wind speed (indicating that the atmosphere drives

the ocean through enhancedmixing and surface heat fluxes)

2) A reduced magnitude of correlation between SST and

precipitation (indicating that SST perturbations in low-

resolution ocean models no longer translate to enhanced

latent heat flux and associated local increases in precipitation)

3) An increased positive correlation between shortwave flux

and the SST (indicating that perturbations in atmospheric

cloudiness can directly translate to changes in the SSTs).

Detailed comparisons with the eddy-permitting version of

the Navy-ESPC model (cf. left and central columns in Fig. 11)

show marked differences in the OA correlations compared

to the eddy-resolving version of the model. While the eddy-

permitting version allows for the presence of SST gradients in

the vicinity of the boundary currents, the magnitude of these

correlations and the magnitude of the SST variance is greatly

reduced (see gray isoline for SST STD in Fig. 11). Over the rest

of the ocean, theOA interactions in the eddy-permittingmodel

are dominated by the atmosphere driving the SST perturba-

tions through fluctuations in the atmospheric shortwave flux.

This is especially prevalent in the tropical Indian Ocean, where

the eddy-resolving simulation has almost no correlation be-

tween SST and shortwave radiation, while the eddy-permitting

simulation has a strong correlation. We attribute this to the

lower internal variability of the ocean in the low-resolution

simulation that allows the ocean to respond linearly to per-

turbations in the shortwave radiation. In contrast, we hypoth-

esize that in the high-resolution ocean simulation increases

in the shortwave radiation do not translate to increased SSTs,

because more active ocean mesoscale dynamics counteract

the development of shallow surface heating layers. Future

work to examine these relationships in observational data is

warranted.

Detailed comparisons with the CERA system (comparing

left and right columns in Fig. 11) indicate that the ocean–eddy-

parameterized ensembles still capture strong correlations in

FIG. 10. Response of the ocean with shallow MLD to increased atmospheric storminess.
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the TEPAC region and the seasonal cycle with enhanced

correlations in midlatitude summer [not shown but consistent

with findings of Feng et al. (2018) and Laloyaux et al. (2018)].

The 18 model is capable of representing equatorial upwelling

and the associated tropical instability waves with a Rossby

radius of deformation on the order of 250 km. The CERA

system is also capable of resolving the seasonal shallowing of

the midlatitude mixed layer as it is driven by the weakening of

the atmospheric winds during summer.

However, the CERA system does not exhibit strong corre-

lations associated with the meanders of the Gulf Stream, since

the Rossby radius of ;20 km is smaller than the ocean grid

resolution of ;100 km. The CERA system also does not cap-

ture the interaction between the atmospheric convection and

the shallow ocean mixed layer that occurs in the Navy-ESPC

system [section 4a(3)]. While the CERA and the Navy-ESPC

systems differ in many aspects, this lack of interaction between

tropical convection and the ocean mixed layer is due to the

relatively coarse (10m) near-surface vertical model layer

thickness in the CERA system. By contrast, the Navy-ESPC

uses a hybrid vertical coordinate with the top ocean level

thickness of 1m and an adaptive vertical coordinate that can

resolve the vertical density gradients below the mixed layer.

Recall that the MLD is often shallower than 20m in the

tropical India Ocean and the Warm pool areas (Figs. 4e,f).

Overall, outside of the TEPAC region, the correlations in the

CERA system are primarily indicative of the atmosphere driv-

ing the ocean, with very little indication of the ocean driving

the atmosphere as seen in systems with an eddy-resolving

ocean (S. P. Bishop et al. 2017) and in the observation-based

literature cited in sections 2 and 4a(1).

6. Summary and conclusions

This paper presents for the first time a systematic review of

coupled, short-term OA correlations in an ocean-eddy-

resolving ensemble simulation of the Earth system. Similar

to previous studies, we find that OA coupling (as measured by

the correlations in this study) is prominent in the regions of

strong SST gradients, such as western boundary currents (Gulf

Stream, Kuroshio, Aghulas, and Falklands Current retroflec-

tion regions), equatorial upwelling (tropical east Pacific), and

in the eastern boundary upwelling regions. In these regions, the

correlations suggest that short-termOA interactions are driven

(modulated) by the mesoscale dynamics of the ocean fronts,

where ocean dynamics can create strong SST fronts that drive

the patterns of turbulent and radiative fluxes with the atmo-

sphere. Consistent with the previous literature, we find that, in

regions with strong SST gradients, ocean perturbations drive

the atmosphere. Diagnosis of the specific mechanisms for

how the SST gradients influence the atmosphere (described

in section 2) is beyond the scope of this paper.

FIG. 11. Comparison of annual average correlation between SST and (from top to bottom) 2m temperature, 10m wind speed, total

precipitation, and shortwave radiation.
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In addition to documenting the influence of strong SST gra-

dients, we show that a shallowing of the ocean mixed layer

modulates the strength of the OA correlations. It appears

that OA coupling is strongest when the MLD is shallower

than 20–40m. Such periods of shallow mixed layer depth are

associated with synoptic or seasonal weakening of the atmo-

spheric wind speeds. During these shallow MLD periods, the

atmosphere drives the ocean. The ocean mixed layer is gen-

erally shallow inmidlatitudes during summer and in the tropics

(Figs. 4e,f and 7a). Our data also suggest that midlatitude re-

gions can shift from atmosphere-driven ocean during summer

to ocean-driven atmosphere in winter.

The reversal of the sign of the OA correlations and its re-

lation to MLD in the midlatitudes does not appear to have

been documented in the literature. A comprehensive diagno-

sis of the process controlling the OA flux correlations will

involve a careful examination of the fluxes, the MLD, and

possibly a linear perturbation analysis, which are beyond the

scope of this study. Short of such detailed examination, we

hypothesize that this new finding can be attributed to the way

our dataset is constructed. As the coupled Navy ESPC en-

sembles are cycled, they develop small perturbations in the

ocean temperature within the mixed layer (on the order of

0.2–0.4K according to Fig. 4b), which is comparable to the

typical SST uncertainty of 0.5–0.7K in an ocean DA system

(Cummings and Smedstad 2014). Because of the thermal in-

ertia of temperature perturbations in a deep mixed layer,

the atmosphere will respond to these SST perturbations. It

would be difficult to discern such correlations using a tradi-

tional analysis of monthly anomalies, which are likely domi-

nated by synoptic storm variability typical in midlatitude winter.

In contrast, all our ensemble members share the same, slightly

perturbed, synoptic environments that occur during the analysis

time. Hence, the reversed OA correlations can be interpreted

as the impact that uncertainty in the SST analysis exerts on the

overlaying ensemble of atmospheric circulations.

Finally, we show that in the tropical ocean, the intensity of

OA coupling is modulated by the daily variations in atmo-

spheric convective activity. In the ensemble members with less

active atmospheric convection, the atmospheric state tends to

have fewer clouds, less precipitation, and lighter winds (see

summary in Fig. 8). In these ensemble members, the shortwave

radiation into the ocean is increased and the wind-drivenmixing

is suppressed, which leads to increased SST and shallower

MLD. In contrast, for the ensemble members with more active

atmospheric convection, the SST is decreased due to a com-

bination of more active wind-driven mixing and lower incom-

ing shortwave radiation (see Fig. 8 for a graphical summary).

Our model of atmospheric-driven modulation of OA fluxes

in the tropical ocean is in contrast to the conventional under-

standing that significant SST perturbations can modulate

convective activity. We attribute this again to the design of our

experiment, which is focused on 24-h coupled forecasts ini-

tialized with small variations of the SST around an analyzed

ocean state. In our case, minor variations of the SST do not

appear to affect the convective activity (as evidenced by the

precipitation rates) and instead the convective activity is mod-

ulated by small perturbations to the atmospheric state that can

trigger highly nonlinear threshold criteria in the atmospheric

convective parameterization. Further study is needed to see

if this mechanism is replicated in a convection-resolving

model or supported by observational data that account for

the seasonal cycle.

Comparisons of the OA correlations that were retrieved

from the eddy-resolving Navy-ESPC model with the OA cor-

relations retrieved from the ECMWF parameterized eddy

model and the eddy-permitting version of the Navy-ESPC

model further demonstrate the need for eddy-resolving ocean

modeling to properly characterize patterns of OA coupling.

For example, the CERAmodel with a 18 oceanmodel and 10m

first ocean layer thickness only captures OA correlations in the

summer midlatitudes and in the tropical east Pacific (where

the ocean model resolves the ocean Rossby radius of defor-

mation). These findings are consistent with Feng et al. (2018)

and Laloyaux et al. (2018) that show coupling in the CERA

dataset only in the midlatitudes and the TEPAC region and do

not show any coupling in the western boundary regions or

in the tropical Indian and west Pacific Oceans. The compari-

son with the eddy-permitting version of the Navy-ESPCmodel

indicates that a lower resolution ocean responds more directly

to the perturbations in the atmospheric conditions and hence

SSTs can warm more readily in response to positive pertur-

bations in surface fluxes. In addition, simulation with the eddy-

permitting ocean has significantly lower SST variability around

ocean fronts, which decreases the ability of the ocean to drive

atmospheric properties. As a result, the direction of the OA

fluxes in coupled models that do not resolve ocean mesoscale

variability properly is predominantly from the atmosphere

into the ocean. These results motivate the development of

new methods to verify the strength of OA coupling in coupled

models against observations. One such promising method is

based on cross-spectral correlations computed from the scat-

terometer wind and SST observations presented in Laurindo

et al. (2019).

Patterns of short-term OA correlations found here support

the importance of coupled modeling for short-term Earth

system forecasts. Our findings also suggest that the imple-

mentation of strongly coupled data assimilation would require

specification of flow-dependent correlations either through

localized ensembles (e.g., as used in Sluka et al. 2016; Frolov

et al. 2016) or through coupled tangent linear models (C. H.

Bishop et al. 2017). This further supports findings by Smith

et al. (2017) that coupled correlations have significant flow and

state dependence. However, our findings also suggest that av-

erage correlations across the ocean–atmosphere interface can

be quite low, especially away from the strong boundary cur-

rents and regions with active atmospheric convection. This is

in contrast to correlations within a single fluid that decay ex-

ponentially with distance from the observation. Despite the

modest magnitude of the averaged cross-fluid OA correlations

found in this study, it is likely that locally in time and space the

OA correlations can be much larger. This would be consistent

with the recent findings that a small number of extreme events

might be dominating the average OA exchange (Parfitt and

Czaja 2016; O’Neill et al. 2017). Furthermore, the small, short-

term OA correlations might increase if averaged over time
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(Feng et al. 2018), this might impact the skill of the subseasonal

and seasonal forecasts that often look at weekly and monthly

averaged forecasts respectfully. However, to distinguish cases

where these correlations are significant will likely require a

larger number of ensemble members than is a common prac-

tice at present.

Further progress in coupled data assimilation and forecast-

ing will require extra attention to the specification of these

modest OA correlations. Our comparisons of the OA cor-

relations in the systems with coarser ocean resolution also

suggest that the OA correlations in non-eddy-resolving models

might be significantly different from the actual OA balances

present in nature, which would require additional care

when observations are assimilated into a coupled model. For

example, an ensemble of eddy-parameterized models will

suggest that a warm SST innovation (a mismatch between

the observation and the forecast) in the Gulf Stream region

should translate to reduced cloud cover and weaker winds in

the atmosphere, which is the opposite of how the actual

atmosphere may respond. Mitigation of such misrepresen-

tation of coupled correlations with small and imperfect en-

sembles will motivate further development of advanced

localization strategies and novel uses of representation er-

ror in coupled DA.
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APPENDIX

Computation of Statistical Quantities

a. Computation of OA correlations

OA correlations described in this paper are computed using

the following steps:

1) First, we remove the diurnal variability from the fields by

computing a daily average of ocean and atmospheric fields:

x24(t)5
1

N
t

�
24

t50

x
t
(t) , (A1)

where x24(t) is the 24-h average of a variable x (such as sea

surface temperature), t is the forecast length in hours, t is

the specific start time for the forecast, and xt is the in-

stantaneous forecast for the forecast lead t. Using a series

of sensitivity experiments, we established that averaging

over the t 5 12 and t 5 24 forecasts provided ensemble

correlations least affected by the model spinup within the

first day of the forecast window. Specifically, the average

of t 5 12 and t 5 24 correlations was very similar to the

correlations from a free-running model computed using 6-

hourly increments over day 3 of the forecast (from t 5 48

to t 5 72 using 6-hourly increments). This finding is

consistent with the finding of Laloyaux et al. (2018) who

found that in the CERA system, the ocean and the at-

mosphere come in to the adjustment within the first 12 h of

the forecast.

2) Then, correlation cvar1jvar2 for a single short-lead forecast

was computed:

ctvar1jvar2 5 corr(var1; var2)
t 5

�
Nens

i51

fx24var1g
t

i2 fx24var1gt
� �

fx24var2g
t

i2 fx24var2gt
� �h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
Nens

i51

fx24var1g
t

i2 fx24var1gt
� �h i2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
Nens

i51

fx24var2g
t

i2 fx24var2gt
� �h i2s , (A2)

where var1 and var2 are variable labels such as air tem-

perature or ocean temperature, t is the start date of the

ensemble forecast, for example 1 August 2017, i is the en-

semble member index (from 1 to Nens), and overbar de-

notes the ensemble average for this start date.

We chose to focus in Eq. (A2) on the zero-lag correla-

tions between daily averages as they are most relevant to the

problem of coupled DA. Specifically, most existing coupled

DA system (Lea et al. 2015; Laloyaux et al. 2015; Holt et al.

2011; Barton et al. 2021) use DA windows between 6 and

24 h in length. Any lagged correlations between daily av-

erages are not addressed explicitly by the DA system and

are instead generated by the coupled forecast model (e.g.,

Komori et al. 2018). These implicit lagged correlations are

relevant to drivers of multiweek predictability and their

study lies outside of the scope of this paper.

3) Finally, when needed, an annual average of short-term

correlations in Eq. (A2) was computed as following:

cannualvar1jvar2 5
1

N
t

�
52

t50

ctvar1jvar2 , (A3)

where the summation in Eq. (A3) is over theNt5 52 weekly

forecasts.

It should be noted that averaging of the correlations in

Eq. (A3) increases the effective ensemble size and reduces

sampling noise in the correlation computation. For example,
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given the same p value of 0.05, the instantaneous correlation in

Eq. (A2) is statically significantly different from zero when it is

larger than 0.47, while the annual average in Eq. (A3) is signif-

icant at much lower cutoff of 0.07. The downside of the aver-

aging over the annual cycle is that it highlights the regions that

have stationary statistics (when the sign and the magnitude of

the correlation is similar through the year). In regions where

correlations have a significant annual cycle, the annual average

may not be meaningful. Hence, in addition to the annual aver-

ages of correlations, we also examine the seasonal cycles of

correlations for each of the study regions highlighted here.

b. Computation of the annual average of the standard

deviation

To compute the annual average of the ensemble standard

deviation, we used the following formula that first averaged

variances for each individual start time before taking the

square root of the average variance:

stdannual
var 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

52
�
52

t50

fvar[X
var
(t)]g

s
, (A4)

where Xvar(t) is the ensemble of fields for the target variable

‘‘var’’ valid for time t.
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